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Abstract

Determining whether two DNA sequences are similar
is an essential component of DNA sequence analysis.
Dynamic programming is the algorithm of choice if
computational time is not the most important consid-
eration. Heuristic search tools, such as BLAST, are
computationally more efficient, but they may miss
some of the sequence similarities (Altschul et al.,
1990). These tools often use common k-tuples (words)
between the two sequences to determine anchor points
for the alignment, and spend most of their computa-
tional time extending the alignment beyond these an-
chor points. We discuss and provide a DNA sequence
similarity search implementation (called SENSEI) that
improves upon the performance of BLASTN by al-
most an order of magnitude for comparable sensitivity.
This improvement is a result of using compactly en-
coded scoring tables for k-tuples, encoding bases with
a single bit, filtering the sequence to remove the sim-
ple sequence repeats using XNUN, and masking the
known species-specific repeats in the query sequence.
To reduce memory requirements, especially for large
genomic DNA query sequences, we recommend gen-
erating the neighborhood words from the target se-
quence at run-time, instead of generating them by
preprocessing the query sequence.

Introduction

Discovering homologs to a new DNA sequence is often the
first step in establishing its possible origin and function.
Statistically significant sequence similarity is often used to
infer homology. Dynamic programming is the best known
algorithm for establishing sequence similarity (Smith and
Waterman, 1981; Needleman and Wunsch, 1970; Myers
and Miller, 1988). Unfortunately, dynamic programming is
computationally expensive, as it takes time proportional to

nigues apply to nucleic acid sequence similarity searches,
they have not been optimized for these searches.

Nucleic acid sequences have special properties that
should make it possible to develop better tools for specifi-
cally searching nucleic acid sequence databases. These
properties include a small four-nucleotide alphabet and
simple evolutionary models for base mutations (States,
Gish, and Altschul, 1991). Moreover, nucleotide query se-
guence are often much longer in length than protein se-
guences. The nucleotide sequences range from 40,000
bases for a cosmid to a few million bases for bacterial ge-
nomes and yeast chromosomes. Soon, contigs of almost a
hundred million bases will become available asGhele-
gansand human chromosomes are sequenced.

SENsitive SEarch Implementation (SENSEI) is a tool
for the computationally efficient identification of nucleic
acid sequence similarities, and it is particularly optimized
for the analysis of large sequences. The search engine is
based on a heuristic word search similar to that of BLASTN
(Altschul et al., 1990). BLASTN, a component of the
BLAST suite of programs, is used for searching DNA que-
ry sequences against a DNA sequence database or a DNA
target sequence. For comparable sensitivity, SENSEI is al-
most an order of magnitude faster than BLASTN. Several
features have been incorporated to facilitate genomic se-
guence analysis, including automated masking of short and
long period repeats, assembly of ungapped aligned seg-
ments (HSPs) into gapped alignments, a memory-efficient
algorithm, and increased flexibility in scoring schemes.

Methods

The SENSEI search engine

Both the BLAST and SENSEI search engines are based on
a word search algorithm in which words generated from the
query sequence are indexed by the location of their occur-
rence in the query. Thus, for each word or k-tuple, a list of

the product of the lengths of the query sequence and the tar-, yo ocations in the query sequence containing that word
get sequence. There are numerous heuristic sequence simi-

Brity search proaram hich are faster but berhaps not ass generated. The target sequence is then scanned sequen-
Saggg.ts. erK/logtr o?rt?]essé \évalfa be:an oSt'rrrf :dgorr anEn)'Sno ac.dstially to identify potential matches by finding words in
sequIeIXcé comparisons an(\j/ perform Il:elmgrkably weIII The'secommon with the query. When a word hit occurs, the pro-
orograms include BLAST (Altschul et al., 1990) and FAS- gram attempts to extend it on both the left and the right by

- - checking if additional matching nucleotides can be found.
TA (Pearson and Lipman, 1988). Though the heuristic tech- If this extended word forms a significant ungapped segment
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Figure 1. In BLASTN, multiple words for each query address are stored in the word look-up table. In SENSEI, only a single
word for each query address is stored in the word table, and multiple words are generated for each target location at run-time.

Ungapped segment score: 39 (42 unmasked)
Expected frequency in random sequence 5.86e-08, unmasked 7.36e-09
Expected frequency using HSP composition 4.23e-07

Query: 25019 ttgacctcaggtgatccgccctcattggcectttcaaagt gctgggattac 25068
XX - X (-1
Target: 29879 ccgggttcaagtgattctcctgcatcagectcccgagaa gctggaactac 29830
Query: 25069 aagcat gagccaccacacccacccagtgctgttattttttagtg 25112
]| XXLA-X]-|-mmmmmmmmmmmmmmmmmm
Target: 29829 aggcgt ctgtcaccatacccggctaatttttttgtatttttagt 29786

Figure 2. An example of a significant sequence repeat in the human G6PD locus that is discovered using the 1 bit/base
encoding, but cannot be discovered using the 2 bit/base encoding. The bold face alignment denotes the initial 16-base (purine/
pyrimidine) word hit, matches are denoted by “|", transitions by “.”, transversions by “x”, and masked regions by “m”. In this
alignment, identities score +1, transitions 0, and transversibns ; this corresponds to a PAM 86 nucleotide scoring matrix

with a transition to transversion ratio of 3.

(in the BLAST nomenclature, high-scoring pair or HSP) are searched in both the forward and reverse-complement
and its score achieves statistical significance, the extendeddirections, and inexact word matches for the target se-
word is saved. quence are generated at run-time. This difference between
A limitation of these approaches is that for sequence sim- BLAST and SENSEI is illustrated in figure 1. In SENSEI,
ilarity to be discovered, the two sequences should share athe word table is the same size as the length of the query
common word or k-tuple. For example, with default param- sequence; it does not depend upon the number of neighbor-
eters BLASTN requires an 11-nucleotide match (11-tuple). ing words searched. For a 40 kbase query sequence, the
Search sensitivity can be increased for distantly related se-word table stores 40,000 addresses. This reduction in table
quences by not only storing exact words, but also storing size is at the expense of a small run-time penalty associated
the inexact words. The first level of inexact words for an with setting up the reverse-complement sequence and gen-
11-tuple would be all the 11-tuples that differ from the orig- erating the target neighborhood words. However, this is not
inal 11-tuple by one base. At each base position, there arethe rate limiting step in the neighborhood search algorithm;
3 other possible bases leading to a total of 33 neighboring HSP extension consumes most (~90%) of the CPU time.
11-tuples. In BLAST, this is implemented by storing in the The size of the word table is reduced further by masking
word table all the k-tuples that match some position in the regions of the query sequence that correspond either to sim-
query sequence or its reverse complement either exactly orple sequence repeats such(@#) , or to species-specific
nearly exactly. For a 40 kbase query, and a word size of 11repeats such aslu’s in humans.
nucleotides, storing all the words that match the query se- SENSEI offers a choice of two alternative encodings for
quence in at least 10 of the 11 nucleotide positions requiresthe DNA alphabet. The first option encodes each base using
a word table of 2 (strands) x (3x11+1) x 40 kbase x 2 bytes/ 2 bits; BLASTN uses the same encoding. However,
location= 5.42 Mbytes. This table size increases to over 84 SENSEI uses an index word of 8 sequential bases while the
Mbytes if higher sensitivity is required by matching at least default for BLASTN is 11 bases. The second encoding op-
9 of the 11 nucleotides. In SENSEI, the size of the word- tion uses a single bit (purine/pyrimidine bit) to represent
table is reduced by indexing only exact words derived from each base; thus A and G are indistinguishable: both are cod-
the positive strand of the query sequence. Target sequencegd by the same bit (0), and C and T are indistinguishable.



This is a default option in SENSEI, but it is not available Table 1. The size of the score table for comparing k-tuples
in BLASTN. For nearly identical sequences, better search with direct score look-up and exclusive-or based hashing.

sensitivity is obtained with the 2 bit/base encoding. For dis-
tantly related sequences, search sensitivity is improved by
using the 1 bit/base encoding. Typically, the search time
with the 1 bit/base encoding is smaller because the word ta-
ble is less sensitive to biases in the base and oligonucleotide
content of the sequences. Figure 2 displays a significant re-
petitive sequence from HUMGG6PD that is discovered by
using a 1 bit/base encoding and 16-tuple match, but is
missed if a 2 bit/base encoding and an 8-tuple match is uti-
lized. This is because the alignment contains a run of 16
matching purines and pyrimidines, but it does not contain a
run of 8 identical bases. This is just one example of the kind
of similarities for which the 1 bit/base encoding performs
better; there are other examples for which the 2 bit/base en-
coding performs better.

O

Oligo Full Score XOR Score
Length Table Size Table Size
1 16 4
2 256 16
4 65,536 256
8 4,294,967,29¢ 65,53
k 42K 4K

Extending word hits on both sides to check if they result Table 2. Representation of bases using 2 bits/base and the
in a significant HSP is the most computationally expensive result of XOR operation.

phase of the search for BLASTN. When a word hit is

found, it is first scrutinized to see if it falls within a previ-
ously identified HSP; if not, the word hit is extended to see

if it results in a new significant HSP. Traditionally, BLAST
extends the word hit by moving a single base at a time. It

would be more efficient to move forwakdk >1) bases at
a time. However, the problem with extendingpases at a

time is that it requires knowing the score between every
pair of k-tuples, resulting in a score table withk entries

(table 1). The size of this score table can be reduced by
hashing. A simple and effective hash function is the logical

A©0) | G(O1)| Cc@o)| T
A (00) | 0(00)

G(01) | 1(01) | 0(00)

C(10) | 2(10) | 3(11) | 0(00)

T@E1) |3@1) | 2@0) | 1(01)| 0(00)

exclusive-or(XOR) of the two k-tuples. Computing the

XOR of single bases, each represented by 2 bits, providesFigure 3. The area searched at the end of HSP 1 to find HSP
four different resultant values (table 2). These can be used? jsxy. Thus, a possible penalty for merging the two HSPs

to index a hash table that provides specific scores for ajg|q

match, transition, and transversion. For k-tuples, the XOR
operation reduces the domain of the hash function to the
square root of the size of the original domain; therefore, a
significantly smaller hash table is required. This is equiva-
lent to the function forscore( ktuple;, k-tuple,)  being
replaced byscore( XOR ktuple, k-tuple,))

In summary, SENSEI uses a logical exclusive-or (XOR)
to encode the score table and extends HSP scores 8 basefp
pairs at a time. Theoretically, this approach can increase the >
rate of HSP extension by a factor of 8. In practice, the <
speed-up depends on the cache size and memory hierarchy®>’
of the CPU. Scores in this phase of the calculation are cal- ¢

quence

culated using limited precision discrete scores. If an HSP is
found to be close to significance, it is rescored using a dou-
ble-precision scoring matrix. The masking of the query se-
guence for the presence of repeated sequences is incorpo-
rated in this rescoring by reporting both the masked and
unmasked score.

Scoring systems

In most species, the various substitution mutations have un-
equal rates. In particular, transitions (a purine substituted
by a purine or a pyrimidine substituted by a pyrimidine) are
more frequent than transversions (purine-pyrimidine ex-

g, (xy) .

Target Sequence —m

HSP 1

HSP 2




changes) by a factor of about 3 (Li, Wu, and Luo, 1985). a threshold that will mask a small fraction (default 0.1%) of

Incorporating the correct model for evolution into the sim- the query, if the query was a random sequence.

ilarity scoring system increases the search sensitivity

(Statels, Gi;h, anccji Altschr:ll, 199|2). The opéimal scor(ing syﬁ— Search Sensitivity

tem also depends on the evolutionary distance (i.e., the . . o .

number of substitutions that have occurred) between two Tfh? proﬁablllt_yho]: 'de.““fﬁ'f.'g an ar;chorlpm_r:jt for an HSP

homologous sequences. The transition/transversion rateX! 'SNgthn with fraction f identical nucleotides using a

and the evolutionary distance on which the scoring system heighborhood table with word sikas

is based can be specified for SENSEI searches. The evolu-

tionary distance can be provided either as a fraction identity

or as a PAM number (point accepted mutations, i.e., accept- . .

ed substitutions per 100 bases) (Fitch and Margoliash, , | IS assumes that the—k+1  words are independent.

1967; Dayhoff, Schwartz, and Orcutt, 1979). If the fraction It transversion bit (1 bit/base) encoding N used, t_hen the
fraction identity corresponds to the fraction of purine-pu-

lﬂgn:gérlcs)psr%et:glgijl\,ﬂtgﬁn;])tr)ggr;ram automatically calculates rine and pyrimidine-pyrimidine matches. Assuming that a

The scoring matrix is calculated and applied using dou- transition is three times more likely than a transversion, two
ble-precision floating-point arithmetic. This makes it im- Seduences that share 50% sequence identity have the pu-
possible to use the dynamic programming algorithm to 'N€S and pyrimidines conserved at 75% of the positions.
compute the K term in Karlin and Altschul statistics (Karlin | 1uS: the effective fraction identity is higher with a 1 bit/
and Altschul, 1990). Instead, a Monte Carlo sampling is 22S€ e€ncoding. Therefore, for the same size k-tuples, the 1
performed. This calculation is also used to estimate the ex- Eg/:)easssesegg(i?‘idclnngc\ellllvitl)leng:a?jr?osg\?;ﬁgfé nqg\:]ve\ﬁg’rétv‘\’l‘glrl d
pected length per unit score (in bits) for a randomly occur- hits. To b%lance_the specificity and sensitivit >I/on er k-tu-
ring positive score alignment, so that the expected fraction X P Y Y, long

of sequence masked at random can be estimated. All the?'€S are used with the 1 bitlbase encoding. Comparable
scores are calculated and reported in bits (Altschul, 1991), SPecificity is obtained by using an equal number of bits for
’ " both representations; typically, 16 bits are used, givikg a

. of 8 for the 2 bit/base encoding and 16 for the 1 bit/base
Assembly of gapped alignments encoding.
Two or more ungapped similar segments (HSPs) in a se- Figure 4 contains sample plots with the sensitivity plot-
guence comparison may be either an unrelated occurrenceted as a function of the HSP length for the two encodings.
or they may indicate the presence of insertion/deletion mu- These are theoretical predictions computed from equation
tations. A choice of two different gap penalty measures is 1. For very short HSPs, the 2 bit/base encoding does better,
provided. The first is the traditional affine gap cost with a but for both longer HSPs and for low sequence identity, the
fixed penalty for introducing the gap and an extension term 1 bit/base encoding performs better, though neither per-
that increases linearly with the gap length. The alternative forms exceedingly well with evolutionary-distant sequenc-
is a statistical estimate that penalizes the gap by the size ofs. All these plots assume that the nucleotide substitutions
the space searched to find the next HSP. The penalty asfollow the 3:1 ratio of transitions to transversions. The sen-
sessed idog, (xy) bits, wherey s the size of the space sitivity of the 1 bit/base encoding is proportional to the ratio
searched to find the next HSP (consider figure 3). If the of the transitions to transversions. Thus, this 1 bit/base en-
sum of the scores of the HSPs including the gap penalty iscoding is more sensitive, if the ratio of transitions to trans-
more than the score of the individual HSPs, then they areversions is high, and less sensitive, if it is low.
combined into a gapped alignment. A dynamic program-
ming algorithm (Wilbur and Lipman, 1983) is used to i i
choose the optimal sets of HSPs for assembly into gapped Results and Discussion
alignments given the constraint that no HSP can be used

p = 1o (1-fH" (1)

sensitivity

more than once. Comparison with BLASTN
_ _ In the BLAST suite of programs, the program designed
Short period repeat masking for searching a nucleotide query against a nucleotide data-

Genomic sequences often include arrays of short period base is BLASTN. SENSEI and BLASTN are similar tools

tandem repeats that generate artifactual high-scoring align-2S they both use neighborhood word indices to search for
ments. The elimination of these simple sequence repeatd!UCl€iC acid sequence similarities. SENSEI has several fea-
enhances the specificity of sequence similarity searchestUres that are designed to make it especially convenient for
(Claverie and States, 1993). The XNUN short-period tan- use in the analy_5|s of large segments of genomic sequence.
dem- repeat filter is built into SENSEI. Either the threshold 1hese features include
score for masking a tandem repeat or the longest period of* integration of short-period tandem-repeat sequence mask-
the tandem repeats to be masked can be specified. If no 'N9: - _
threshold is specified, the program automatically calculates * Species-specific repeat masking,

e summary reporting of repeats and tandem arrays,



Figure 4. The sensitivities of the two encodings plotted as a function of the length of the homologous sequences and the
percentage sequence identity as computed from the equation (1).
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Table 3. Sample execution-times for SENSEI and BLAST to find all significant repeats in DNA genomic sequences. The “s”
columns are speed-ups over BLASTN (W=8). A few of the important options for SENSEI are listed in columns 2 to 4. “E”
specifies whether a 1 bit/base or a 2 bit/base encoding was used. “M” specifies if the query sequence was masked with known
species-specific repeats. “X” specifies if XNUN was used on the sequence to mask simple sequence repeats.

Sequence Humanf3 globin Yeast Chr llI Human T-cell
(73 kbp) (315 kbp) receptor (685 kbp)

Program E| M X| Time(inseconds) § Time (insecongds) | s Time (in seconds) S
BLASTN (W=8) 40| 1.0 1,239 1 96,720 1
BLASTN (W=11) 18| 2.2 203 6 24,896 i
SENSEI (mimic) 2| N 43 1.1 548 2 2,866 38
SENSEI (native) 1] Y Y 18 2.7 51 24 345 280
SENSEI (no mask) I N Y T 57 348 278
SENSEI (2 bits/base) 2 N /5.7 1 17 319 2B5
SENSEI (no XNUN) | 1| N| N 10f 4.0 60 21 420 230




» assembly of HSPs into gapped alignments, and low entropy sequence by XNUN. For the native con-

« aflexible scoring system, figuration in comparison to BLASTN (W=8), there is a 2-

« enhanced search sensitivity, fold improvement in speed for thg -globin locus, and a

« reduced memory requirements, particularly for long que- 280-fold improvement for the TCR- ~ region. We expect at
ries, and most a 10- to 20-fold improvement in speed because of the

. faster run-times for equivalent search sensitivity. improvements in the algorithm that have been discussed so

far. The better-than-expected performance may possibly be
attributed to other differences between the implementa-
tions. For example, BLASTN uses a finite automaton, and
SENSEI uses a hash table. The automaton provides better
speed at the expense of memory. For large query sequenc-
es, the automaton is not resident in memory cache resulting
in poor performance. It is important to re-emphasize that
BLASTN and SENSEI are general-purpose programs for
DNA sequence similarity detection, and finding repetitive
sequence in large genomic sequences is just one possible

We hope that several of the features of SENSEI will be
incorporated into future versions of BLASTN. BLASTN
continues to be developed by Warren Gish and at NCBI. In
particular, a major new release of BLAST is planned that
will incorporate the assembly of HSPs into gapped align-
ments.

The data structure used to store the neighborhood table
in BLAST requires more storage space per entry but is
more efficient than SENSEI at storing and accessing very
long index words. Expected score statistics in BLAST can licati
incorporate knowledge of the database size and composi-app cation. :
tion because BLAST uses a preprocessed copy of the data- € 1ast three rows in the table show the comparable ex-
base. ecution times _for the various modes_of.SENSEI. Surprising-

Empirical tests were performed to compare the execution Y- thé execution times are rather similar for both the 1 bit
speeds of SENSEI and BLASTN (version 1.4.8). These ex- a'n.d the 2 bits per base encodlngs_;. Maskmg by species-spe-
ecution times are provided in table 3. Both BLASTN and cific sequences also has a surprisingly minor effect; we pre-

SENSEI are reasonably complex programs with multiple d'eCt éhate effee(t:tlovxllle b%rhrgoégta%%pr:%?ﬂem?n anacly_;_zcede
parameters and optimizations. Thus, it is rather difficult to sequences g ger. S u ~Specitic re-

choose test data and parameter values that would treat bottP€at Segquences total about 82 kbp (Jurka, 1996); thus con-
programs fairly. The relative execution times depend on the siderable search time is spent in computing the region Of.
architecture, the amount of main memory, the size of the the query sequences that should be masked. Another benefit
memory cache, the hand-optimization level of the program, of masking the sequence is the easier interpretation of
and (most of all) the test data and the parameter values. For€arch results because the output is much smaller. For ex-
example, SENSEI provides the best performance in discov- ample, a single list of all thalu's is produced rather than

ering evolutionary-distant repeats in large genomic human & 1Sting of the similarities between each painaf's in the
sequences, while BLASTN is optimized for locating ho- query sequence. Filtering the sequence to remove short pe-

mologs (with high-percentage identity) of smaller DNA se- riqd ta”dem repeats (also called §imple sequence repeats or
quen?:es( in Iargge dgtabasesg. BLASTKI) performs well with a Microsatellites) using XNUN provides about a 30-50% im-
word size of 11 bases, while SENSEI uses a word size of Provement in speed. Versions of SENSEI that do not use
either 8 bases (2 bits/base) or 16 bases (1 bit/base). Thus, é(NUN take considerably longer to execute.
“fair” comparison is rather difficult. o

Table 3 contains some sample execution times in sec- Avalilability
onds for various modes of BLASTN and SENSEI. All these Executable versions of SENSEI for SUN Solaris 2.4, DEC

tests were run on a 55 MHz SUN Sparcstation 10 (Solaris Alpha, SGI mips 4, and SGI mips 5 are available from

2.4). These test runs addressed the problem of finding all . . : e
internal repeats (including local and distant, as well as di- ng/slmi.lbc.wustl.edu/sense| and fip:/fibc.wustl.edu/

rect and inverted) in three different large genomic DNA
fragments: the huma@@ -globin gene region on chromo-
some 11 (HUMHBB), yeast chromosome Iil (SCCHRIII), Acknowledgments
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