
In Proceedings, Fourth International Conference on Intelligent Systems for Molecular Biology, AAAI press, 1996.

Compact Encoding Strategies for DNA Sequence Similarity Search

David J. States and Pankaj Agarwal
Institute for Biomedical Computing
Washington University, Box 8036

700 S. Euclid, St. Louis, MO 63110
{states, agarwal}@ibc.wustl.edu

Abstract

Determining whether two DNA sequences are similar
is an essential component of DNA sequence analysis.
Dynamic programming is the algorithm of choice if
computational time is not the most important consid-
eration. Heuristic search tools, such as BLAST, are
computationally more efficient, but they may miss
some of the sequence similarities (Altschul et al.,
1990). These tools often use common k-tuples (words)
between the two sequences to determine anchor points
for the alignment, and spend most of their computa-
tional time extending the alignment beyond these an-
chor points. We discuss and provide a DNA sequence
similarity search implementation (called SENSEI) that
improves upon the performance of BLASTN by al-
most an order of magnitude for comparable sensitivity.
This improvement is a result of using compactly en-
coded scoring tables for k-tuples, encoding bases with
a single bit, filtering the sequence to remove the sim-
ple sequence repeats using XNUN, and masking the
known species-specific repeats in the query sequence.
To reduce memory requirements, especially for large
genomic DNA query sequences, we recommend gen-
erating the neighborhood words from the target se-
quence at run-time, instead of generating them by
preprocessing the query sequence.

Introduction

Discovering homologs to a new DNA sequence is often the
first step in establishing its possible origin and function.
Statistically significant sequence similarity is often used to
infer homology. Dynamic programming is the best known
algorithm for establishing sequence similarity (Smith and
Waterman, 1981; Needleman and Wunsch, 1970; Myers
and Miller, 1988). Unfortunately, dynamic programming is
computationally expensive, as it takes time proportional to
the product of the lengths of the query sequence and the tar-
get sequence. There are numerous heuristic sequence simi-
larity search programs, which are faster but perhaps not as
sensitive. Most of these have been optimized for amino acid
sequence comparisons and perform remarkably well. These
programs include BLAST (Altschul et al., 1990) and FAS-
TA (Pearson and Lipman, 1988). Though the heuristic tech-

niques apply to nucleic acid sequence similarity searches,
they have not been optimized for these searches.

Nucleic acid sequences have special properties that
should make it possible to develop better tools for specifi-
cally searching nucleic acid sequence databases. These
properties include a small four-nucleotide alphabet and
simple evolutionary models for base mutations (States,
Gish, and Altschul, 1991). Moreover, nucleotide query se-
quence are often much longer in length than protein se-
quences. The nucleotide sequences range from 40,000
bases for a cosmid to a few million bases for bacterial ge-
nomes and yeast chromosomes. Soon, contigs of almost a
hundred million bases will become available as theC. ele-
gansand human chromosomes are sequenced.

SENsitive SEarch Implementation (SENSEI) is a tool
for the computationally efficient identification of nucleic
acid sequence similarities, and it is particularly optimized
for the analysis of large sequences. The search engine is
based on a heuristic word search similar to that of BLASTN
(Altschul et al., 1990). BLASTN, a component of the
BLAST suite of programs, is used for searching DNA que-
ry sequences against a DNA sequence database or a DNA
target sequence. For comparable sensitivity, SENSEI is al-
most an order of magnitude faster than BLASTN. Several
features have been incorporated to facilitate genomic se-
quence analysis, including automated masking of short and
long period repeats, assembly of ungapped aligned seg-
ments (HSPs) into gapped alignments, a memory-efficient
algorithm, and increased flexibility in scoring schemes.

Methods

The SENSEI search engine
Both the BLAST and SENSEI search engines are based on
a word search algorithm in which words generated from the
query sequence are indexed by the location of their occur-
rence in the query. Thus, for each word or k-tuple, a list of
all the locations in the query sequence containing that word
is generated. The target sequence is then scanned sequen-
tially to identify potential matches by finding words in
common with the query. When a word hit occurs, the pro-
gram attempts to extend it on both the left and the right by
checking if additional matching nucleotides can be found.
If this extended word forms a significant ungapped segment

Figure 1. In BLASTN, multiple words for each query address are stored in the word look-up table. In SENSEI, only a single
word for each query address is stored in the word table, and multiple words are generated for each target location at run-time.

Figure 2. An example of a significant sequence repeat in the human G6PD locus that is discovered using the 1 bit/base
encoding, but cannot be discovered using the 2 bit/base encoding. The bold face alignment denotes the initial 16-base (purine/
pyrimidine) word hit, matches are denoted by “|”, transitions by “.”, transversions by “x”, and masked regions by “m”. In this
alignment, identities score +1, transitions 0, and transversions ; this corresponds to a PAM 86 nucleotide scoring matrix
with a transition to transversion ratio of 3.

Ungapped segment score: 39 (42 unmasked)
Expected frequency in random sequence 5.86e-08, unmasked 7.36e-09
Expected frequency using HSP composition 4.23e-07

Query: 25019 ttgacctcaggtgatccgccctcattggcctttcaaagt gctgggattac 25068
 ..|.x.|||.|||||.|x||.x|||..||||..|.|..x |||||.|.|||
Target: 29879 ccgggttcaagtgattctcctgcatcagcctcccgagaa gctggaactac 29830

Query: 25069 aagcat gagccaccacacccacccagtgctgttattttttagtg 25112
|.||.| xx|.|||||.||||.x|.|.mmmmmmmmmmmmmmmmmm

Target: 29829 aggcgt ctgtcaccatacccggctaatttttttgtatttttagt 29786

1–

(in the BLAST nomenclature, high-scoring pair or HSP)
and its score achieves statistical significance, the extended
word is saved.

A limitation of these approaches is that for sequence sim-
ilarity to be discovered, the two sequences should share a
common word or k-tuple. For example, with default param-
eters BLASTN requires an 11-nucleotide match (11-tuple).
Search sensitivity can be increased for distantly related se-
quences by not only storing exact words, but also storing
the inexact words. The first level of inexact words for an
11-tuple would be all the 11-tuples that differ from the orig-
inal 11-tuple by one base. At each base position, there are
3 other possible bases leading to a total of 33 neighboring
11-tuples. In BLAST, this is implemented by storing in the
word table all the k-tuples that match some position in the
query sequence or its reverse complement either exactly or
nearly exactly. For a 40 kbase query, and a word size of 11
nucleotides, storing all the words that match the query se-
quence in at least 10 of the 11 nucleotide positions requires
a word table of 2 (strands) x (3x11+1) x 40 kbase x 2 bytes/
location= 5.42 Mbytes. This table size increases to over 84
Mbytes if higher sensitivity is required by matching at least
9 of the 11 nucleotides. In SENSEI, the size of the word-
table is reduced by indexing only exact words derived from
the positive strand of the query sequence. Target sequences

are searched in both the forward and reverse-complement
directions, and inexact word matches for the target se-
quence are generated at run-time. This difference between
BLAST and SENSEI is illustrated in figure 1. In SENSEI,
the word table is the same size as the length of the query
sequence; it does not depend upon the number of neighbor-
ing words searched. For a 40 kbase query sequence, the
word table stores 40,000 addresses. This reduction in table
size is at the expense of a small run-time penalty associated
with setting up the reverse-complement sequence and gen-
erating the target neighborhood words. However, this is not
the rate limiting step in the neighborhood search algorithm;
HSP extension consumes most (~90%) of the CPU time.

The size of the word table is reduced further by masking
regions of the query sequence that correspond either to sim-
ple sequence repeats such as or to species-specific
repeats such asAlu’s in humans.

SENSEI offers a choice of two alternative encodings for
the DNA alphabet. The first option encodes each base using
2 bits; BLASTN uses the same encoding. However,
SENSEI uses an index word of 8 sequential bases while the
default for BLASTN is 11 bases. The second encoding op-
tion uses a single bit (purine/pyrimidine bit) to represent
each base; thus A and G are indistinguishable: both are cod-
ed by the same bit (0), and C and T are indistinguishable.

CA() n

SENSEI

query target query target

SENSEI

Query Target Query Target

BLASTN

This is a default option in SENSEI, but it is not available
in BLASTN. For nearly identical sequences, better search
sensitivity is obtained with the 2 bit/base encoding. For dis-
tantly related sequences, search sensitivity is improved by
using the 1 bit/base encoding. Typically, the search time
with the 1 bit/base encoding is smaller because the word ta-
ble is less sensitive to biases in the base and oligonucleotide
content of the sequences. Figure 2 displays a significant re-
petitive sequence from HUMG6PD that is discovered by
using a 1 bit/base encoding and 16-tuple match, but is
missed if a 2 bit/base encoding and an 8-tuple match is uti-
lized. This is because the alignment contains a run of 16
matching purines and pyrimidines, but it does not contain a
run of 8 identical bases. This is just one example of the kind
of similarities for which the 1 bit/base encoding performs
better; there are other examples for which the 2 bit/base en-
coding performs better.

Extending word hits on both sides to check if they result
in a significant HSP is the most computationally expensive
phase of the search for BLASTN. When a word hit is
found, it is first scrutinized to see if it falls within a previ-
ously identified HSP; if not, the word hit is extended to see
if it results in a new significant HSP. Traditionally, BLAST
extends the word hit by moving a single base at a time. It
would be more efficient to move forwardk (k >1) bases at
a time. However, the problem with extending k bases at a
time is that it requires knowing the score between every
pair of k-tuples, resulting in a score table with entries
(table 1). The size of this score table can be reduced by
hashing. A simple and effective hash function is the logical
exclusive-or (XOR) of the two k-tuples. Computing the
XOR of single bases, each represented by 2 bits, provides
four different resultant values (table 2). These can be used
to index a hash table that provides specific scores for a
match, transition, and transversion. For k-tuples, the XOR
operation reduces the domain of the hash function to the
square root of the size of the original domain; therefore, a
significantly smaller hash table is required. This is equiva-
lent to the function for being
replaced by .

In summary, SENSEI uses a logical exclusive-or (XOR)
to encode the score table and extends HSP scores 8 base-
pairs at a time. Theoretically, this approach can increase the
rate of HSP extension by a factor of 8. In practice, the
speed-up depends on the cache size and memory hierarchy
of the CPU. Scores in this phase of the calculation are cal-
culated using limited precision discrete scores. If an HSP is
found to be close to significance, it is rescored using a dou-
ble-precision scoring matrix. The masking of the query se-
quence for the presence of repeated sequences is incorpo-
rated in this rescoring by reporting both the masked and
unmasked score.

Scoring systems
In most species, the various substitution mutations have un-
equal rates. In particular, transitions (a purine substituted
by a purine or a pyrimidine substituted by a pyrimidine) are
more frequent than transversions (purine-pyrimidine ex-

42k

score k-tuple1 k-tuple2,()
score XOR k-tuple1 k-tuple2,()()

Table 1. The size of the score table for comparing k-tuples
with direct score look-up and exclusive-or based hashing.

Table 2. Representation of bases using 2 bits/base and the
result of XOR operation.

Figure 3. The area searched at the end of HSP 1 to find HSP
2 is xy. Thus, a possible penalty for merging the two HSPs
is .

Oligo
Length

Full Score
Table Size

XOR Score
Table Size

1 16 4

2 256 16

4 65,536 256

8 4,294,967,296 65,536

k

A (00) G (01) C (10) T (11)

A (00) 0 (00)

G (01) 1 (01) 0 (00)

C (10) 2 (10) 3 (11) 0 (00)

T (11) 3 (11) 2 (10) 1 (01) 0 (00)

xy()2log

Q
ue

ry
 S

eq
ue

nc
e

Target Sequence

HSP 1

HSP 2

y

x

42k 4k

changes) by a factor of about 3 (Li, Wu, and Luo, 1985).
Incorporating the correct model for evolution into the sim-
ilarity scoring system increases the search sensitivity
(States, Gish, and Altschul, 1992). The optimal scoring sys-
tem also depends on the evolutionary distance (i.e., the
number of substitutions that have occurred) between two
homologous sequences. The transition/transversion rates
and the evolutionary distance on which the scoring system
is based can be specified for SENSEI searches. The evolu-
tionary distance can be provided either as a fraction identity
or as a PAM number (point accepted mutations, i.e., accept-
ed substitutions per 100 bases) (Fitch and Margoliash,
1967; Dayhoff, Schwartz, and Orcutt, 1979). If the fraction
identity is specified, the program automatically calculates
the appropriate PAM number.

The scoring matrix is calculated and applied using dou-
ble-precision floating-point arithmetic. This makes it im-
possible to use the dynamic programming algorithm to
compute the K term in Karlin and Altschul statistics (Karlin
and Altschul, 1990). Instead, a Monte Carlo sampling is
performed. This calculation is also used to estimate the ex-
pected length per unit score (in bits) for a randomly occur-
ring positive score alignment, so that the expected fraction
of sequence masked at random can be estimated. All the
scores are calculated and reported in bits (Altschul, 1991).

Assembly of gapped alignments
Two or more ungapped similar segments (HSPs) in a se-
quence comparison may be either an unrelated occurrence,
or they may indicate the presence of insertion/deletion mu-
tations. A choice of two different gap penalty measures is
provided. The first is the traditional affine gap cost with a
fixed penalty for introducing the gap and an extension term
that increases linearly with the gap length. The alternative
is a statistical estimate that penalizes the gap by the size of
the space searched to find the next HSP. The penalty as-
sessed is bits, where is the size of the space
searched to find the next HSP (consider figure 3). If the
sum of the scores of the HSPs including the gap penalty is
more than the score of the individual HSPs, then they are
combined into a gapped alignment. A dynamic program-
ming algorithm (Wilbur and Lipman, 1983) is used to
choose the optimal sets of HSPs for assembly into gapped
alignments given the constraint that no HSP can be used
more than once.

Short period repeat masking
Genomic sequences often include arrays of short period
tandem repeats that generate artifactual high-scoring align-
ments. The elimination of these simple sequence repeats
enhances the specificity of sequence similarity searches
(Claverie and States, 1993). The XNUN short-period tan-
dem- repeat filter is built into SENSEI. Either the threshold
score for masking a tandem repeat or the longest period of
the tandem repeats to be masked can be specified. If no
threshold is specified, the program automatically calculates

(xy)2log xy

a threshold that will mask a small fraction (default 0.1%) of
the query, if the query was a random sequence.

Search Sensitivity
The probability of identifying an anchor point for an HSP
of length n with fraction f identical nucleotides using a
neighborhood table with word sizek is

This assumes that the words are independent.
If transversion bit (1 bit/base) encoding is used, then the
fraction identity corresponds to the fraction of purine-pu-
rine and pyrimidine-pyrimidine matches. Assuming that a
transition is three times more likely than a transversion, two
sequences that share 50% sequence identity have the pu-
rines and pyrimidines conserved at 75% of the positions.
Thus, the effective fraction identity is higher with a 1 bit/
base encoding. Therefore, for the same size k-tuples, the 1
bit/base encoding will be more sensitive; however, it will
be less specific—we will need to evaluate many more word
hits. To balance the specificity and sensitivity, longer k-tu-
ples are used with the 1 bit/base encoding. Comparable
specificity is obtained by using an equal number of bits for
both representations; typically, 16 bits are used, giving ak
of 8 for the 2 bit/base encoding and 16 for the 1 bit/base
encoding.

Figure 4 contains sample plots with the sensitivity plot-
ted as a function of the HSP length for the two encodings.
These are theoretical predictions computed from equation
1. For very short HSPs, the 2 bit/base encoding does better,
but for both longer HSPs and for low sequence identity, the
1 bit/base encoding performs better, though neither per-
forms exceedingly well with evolutionary-distant sequenc-
es. All these plots assume that the nucleotide substitutions
follow the 3:1 ratio of transitions to transversions. The sen-
sitivity of the 1 bit/base encoding is proportional to the ratio
of the transitions to transversions. Thus, this 1 bit/base en-
coding is more sensitive, if the ratio of transitions to trans-
versions is high, and less sensitive, if it is low.

Results and Discussion

Comparison with BLASTN
In the BLAST suite of programs, the program designed

for searching a nucleotide query against a nucleotide data-
base is BLASTN. SENSEI and BLASTN are similar tools
as they both use neighborhood word indices to search for
nucleic acid sequence similarities. SENSEI has several fea-
tures that are designed to make it especially convenient for
use in the analysis of large segments of genomic sequence.
These features include
• integration of short-period tandem-repeat sequence mask-

ing,
• species-specific repeat masking,
• summary reporting of repeats and tandem arrays,

Psensitivity 1 1 f k–()
n k– 1+

1()–=

n k– 1+

Figure 4. The sensitivities of the two encodings plotted as a function of the length of the homologous sequences and the
percentage sequence identity as computed from the equation (1).

Table 3. Sample execution-times for SENSEI and BLAST to find all significant repeats in DNA genomic sequences. The “s”
columns are speed-ups over BLASTN (W=8). A few of the important options for SENSEI are listed in columns 2 to 4. “E”
specifies whether a 1 bit/base or a 2 bit/base encoding was used. “M” specifies if the query sequence was masked with known
species-specific repeats. “X” specifies if XNUN was used on the sequence to mask simple sequence repeats.

Sequence
Human globin

(73 kbp)
Yeast Chr III

(315 kbp)
Human T-cell

receptor (685 kbp)

Program E M X Time (in seconds) s Time (in seconds) s Time (in seconds) s

BLASTN (W=8) 40 1.0 1,239 1 96,720 1

BLASTN (W=11) 18 2.2 203 6 24,896 4

SENSEI (mimic) 2 N N 43 1.1 548 2 2,866 38

SENSEI (native) 1 Y Y 18 2.2 51 24 345 280

SENSEI (no mask) 1 N Y 7 5.7 348 278

SENSEI (2 bits/base) 2 N Y 7 5.7 71 17 379 255

SENSEI (no XNUN) 1 N N 10 4.0 60 21 420 230

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 20 25 30 35 40 45 50 55 60

S
e
n
s
i
t
i
v
i
t
y

HSP length

Sequence Identity = 75%

2 bits/base
1 bit/base

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350 400 450 500

S
e
n
s
i
t
i
v
i
t
y

HSP length

Sequence Identity = 35%

2 bits/base
1 bit/base

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

S
e
n
s
i
t
i
v
i
t
y

HSP length

Sequence Identity = 50%

2 bits/base
1 bit/base

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 18 20 22 24

S
e
n
s
i
t
i
v
i
t
y

HSP length

Sequence Identity = 90%

2 bits/base
1 bit/base

β

• assembly of HSPs into gapped alignments,
• a flexible scoring system,
• enhanced search sensitivity,
• reduced memory requirements, particularly for long que-

ries, and
• faster run-times for equivalent search sensitivity.

We hope that several of the features of SENSEI will be
incorporated into future versions of BLASTN. BLASTN
continues to be developed by Warren Gish and at NCBI. In
particular, a major new release of BLAST is planned that
will incorporate the assembly of HSPs into gapped align-
ments.

The data structure used to store the neighborhood table
in BLAST requires more storage space per entry but is
more efficient than SENSEI at storing and accessing very
long index words. Expected score statistics in BLAST can
incorporate knowledge of the database size and composi-
tion because BLAST uses a preprocessed copy of the data-
base.

Empirical tests were performed to compare the execution
speeds of SENSEI and BLASTN (version 1.4.8). These ex-
ecution times are provided in table 3. Both BLASTN and
SENSEI are reasonably complex programs with multiple
parameters and optimizations. Thus, it is rather difficult to
choose test data and parameter values that would treat both
programs fairly. The relative execution times depend on the
architecture, the amount of main memory, the size of the
memory cache, the hand-optimization level of the program,
and (most of all) the test data and the parameter values. For
example, SENSEI provides the best performance in discov-
ering evolutionary-distant repeats in large genomic human
sequences, while BLASTN is optimized for locating ho-
mologs (with high-percentage identity) of smaller DNA se-
quences in large databases. BLASTN performs well with a
word size of 11 bases, while SENSEI uses a word size of
either 8 bases (2 bits/base) or 16 bases (1 bit/base). Thus, a
“fair” comparison is rather difficult.

Table 3 contains some sample execution times in sec-
onds for various modes of BLASTN and SENSEI. All these
tests were run on a 55 MHz SUN Sparcstation 10 (Solaris
2.4). These test runs addressed the problem of finding all
internal repeats (including local and distant, as well as di-
rect and inverted) in three different large genomic DNA
fragments: the human -globin gene region on chromo-
some 11 (HUMHBB), yeast chromosome III (SCCHRIII),
and the human germline T-cell receptor beta chain
(HUMTCRB). To discover all the repeats in a DNA se-
quence using BLASTN, the sequence is used both as the
query and as the database; in addition, the-span option is
used and-hspmax is set to a high value, so that all the re-
peats are found (Agarwal and States, 1994; 1996). For com-
parable sensitivity, the execution times for BLASTN (word
size: W = 8) and SENSEI (mimic BLASTN with W=8) are
utilized. The speedup obtained varies from almost nothing
for the smaller sequence to a 38-fold improvement in speed
for the long human sequence. The native configuration of
SENSEI corresponds to 1 bit/base encoding, masking hu-
man-specific repeat sequences, such asAlu’s (Jurka, 1996),

β

β

and low entropy sequence by XNUN. For the native con-
figuration in comparison to BLASTN (W=8), there is a 2-
fold improvement in speed for the -globin locus, and a
280-fold improvement for the TCR- region. We expect at
most a 10- to 20-fold improvement in speed because of the
improvements in the algorithm that have been discussed so
far. The better-than-expected performance may possibly be
attributed to other differences between the implementa-
tions. For example, BLASTN uses a finite automaton, and
SENSEI uses a hash table. The automaton provides better
speed at the expense of memory. For large query sequenc-
es, the automaton is not resident in memory cache resulting
in poor performance. It is important to re-emphasize that
BLASTN and SENSEI are general-purpose programs for
DNA sequence similarity detection, and finding repetitive
sequence in large genomic sequences is just one possible
application.

The last three rows in the table show the comparable ex-
ecution times for the various modes of SENSEI. Surprising-
ly, the execution times are rather similar for both the 1 bit
and the 2 bits per base encodings. Masking by species-spe-
cific sequences also has a surprisingly minor effect; we pre-
dict that effect will be more appreciable as analyzed
sequences get longer. The database of human-specific re-
peat sequences total about 82 kbp (Jurka, 1996); thus con-
siderable search time is spent in computing the region of
the query sequences that should be masked. Another benefit
of masking the sequence is the easier interpretation of
search results because the output is much smaller. For ex-
ample, a single list of all theAlu’s is produced rather than
a listing of the similarities between each pair ofAlu’s in the
query sequence. Filtering the sequence to remove short pe-
riod tandem repeats (also called simple sequence repeats or
microsatellites) using XNUN provides about a 30-50% im-
provement in speed. Versions of SENSEI that do not use
XNUN take considerably longer to execute.

Availability
Executable versions of SENSEI for SUN Solaris 2.4, DEC
Alpha, SGI mips 4, and SGI mips 5 are available from
http://www.ibc.wustl.edu/sensei and ftp://ibc.wustl.edu/
pub/sensei.

Acknowledgments
We wish to thank Michael Zuker and Warren Gish for in-
formative discussions, the reviewers for their useful sug-
gestions that helped improve this paper, and Laureen
Treacy for proofreading the paper. This work was support-
ed in part by Department of Energy grant DE-FG02-
94ER61910.

References
Agarwal, P. and States, D.J. (1994). The Repeat Pattern
Toolkit (RPT): Analyzing the structure and evolution of the
C. elegans genome. InProceedings, Second International

β
β

Conference on Intelligent Systems for Molecular Biology,
1-9, AAAI press, Menlo Park, CA.

Agarwal, P. and States, D.J. (1996). A Bayesian
evolutionary distance from parametric sequence alignment.
J. Comp. Biol. 3 (1), in press.

Altschul, S.F. (1991). Amino acid substitution matrices
from an information theoretic perspective.J. Mol. Biol.
219: 555-565.

Altschul, S. F., Gish, W., Miller, W., Myers, E.W. and
Lipman, D. J. (1990). Basic local alignment search tool.J.
Mol. Biol. 215: 403-410.

Claverie, J.-M. and States, D.J. (1993). Information
enhancement methods for large scale sequence analysis.
Comput. Chem. 17: 191-201.

Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. (1978). A
Model of Evolutionary Change in Proteins. In M. O.
Dayhoff (ed.),Atlas of Protein Sequence and Structure,
National Biomedical Research Foundation, Washington,
D.C. 5(3): 345-352.

Fitch, W. M., and Margoliash, E. (1967). Construction of
phylogenetic trees.Science155 (760): 279-284.

Jurka, J. (1996). Repbase. NCBI Repository. ftp://
ncbi.nlm.nih.gov/repository/repbase/REF/humrep.ref

Karlin, S. and Altschul, S.F. (1990). Methods for assessing
the statistical significance of molecular sequence features
by using general scoring schemes.Proc. Natl. Acad. Sci.
USA 87: 2264-2268.

Li, W.-H., Wu, C.I. and Luo, C.C. (1985). A new method
for estimating synonymous and nonsynonymous rates of
nucleotide substitution considering the relative likelihood
of nucleotide and codon changes.Mol. Biol. Evol. 2(2):
150-174.

Needleman, S. and Wunsch, C. (1970). A general method
applicable to the search for similarities in the amino acid
sequences of two proteins.J. Mol. Biol. 48: 444-453.

Pearson, W.R. and Lipman, D.J. (1988). Improved tools for
biological sequence comparison. Proc. Natl. Acad. Sci. USA
85: 2444-2448.

Smith, T. F. and Waterman, M. S. (1981). Identification of
common molecular subsequences. J. Mol. Biol. 147: 195-
197

States, D. J., Gish, W. and Altschul, S. F. (1992). Improved
sensitivity in nucleic acid database searches using
application-specific scoring matrices.Methods: A
Companion to Methods in Enzymology3(1): 66-70.

Wilbur, W.J. and Lipman D.J. (1983). Rapid similarity
searches of nucleic acid and protein data banks.Proc. Natl.
Acad. Sci. USA 80: 726-730.

